Convexity properties of Dirichlet integrals and Picone-type inequalities
نویسندگان
چکیده
منابع مشابه
(m1,m2)-Convexity and Some New Hermite-Hadamard Type Inequalities
In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملSOME PROPERTIES OF h-MN-CONVEXITY AND JENSEN’S TYPE INEQUALITIES
In this work, we introduce the class of h-MN-convex functions by generalizing the concept of MN-convexity and combining it with h-convexity. Namely, let M : [0, 1] → [a, b] be a Mean function given by M (t) = M (t; a, b); where by M (t; a, b) we mean one of the following functions: At (a, b) := (1− t) a + tb, Gt (a, b) = a1−tbt and Ht (a, b) := ab ta+(1−t)b = 1 At( 1 a , 1 b ) ; with the proper...
متن کاملMonotonicity, convexity, and inequalities for the generalized elliptic integrals
We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals [Formula: see text] and [Formula: see text] depending on a parameter [Formula: see text], which contains an earlier result in the particular case [Formula: see text].
متن کاملDirichlet integrals and Gaffney-Friedrichs inequalities in convex domains
We study geometrical conditions guaranteeing the validity of the classical GaffneyFriedrichs estimate ‖u‖H1,2(Ω) ≤ C ( ‖du‖L2(Ω) + ‖δu‖L2(Ω) + ‖u‖L2(Ω) ) (0.1) granted that the differential form u has a vanishing tangential or normal component on ∂Ω. Our main result is that (0.1) holds provided Ω satisfies a suitable convexity assumption. In the Euclidean setting, a uniform exterior ball condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2014
ISSN: 0386-5991
DOI: 10.2996/kmj/1414674621